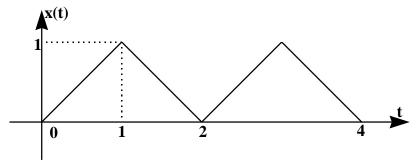
OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING



ECEN 3413 Controls I Spring 1998 Final Exam

Name :	
Student ID:	
E-Mail Address:	

Problem 1: (*Laplace transform*)
Determine the Laplace transform of the following signal, x(t), with six periods (only two periods are shown in the graph).

Problem 2: (*z transform*)

A discrete-time system has the transfer function

$$H(z) = \frac{-0.4z^{-1} - 0.5z^{-2}}{1 - 1.3z^{-1} + 0.4z^{-2}},$$

- a) find an analytical expression for the step response.
- b) write a MATLAB program to find the impulse response (as accurate as you could).

Problem 3: (time response)

Determine the transfer function $E_o(s)/E_i(s)$ of the electrical circuit shown below. Suppose that the input $e_i(t)$ is given by

$$e_i(t) = \begin{cases} E_i & 0 < t < t_1 \\ 0 & \text{elsewhere} \end{cases}$$

 $e_i(t) = \begin{cases} E_i & 0 < t < t_1 \\ 0 & \text{elsewhere} \end{cases}.$ Obtain the output $e_o(t)$. Assume that $R_2 = 15R_1$, $C_2 = C_1$, and $R_1C_1 = 1$. Assume also that the initial charges in the capacitors are zero.

Problem 4: (frequency response) Consider the electrical circuit shown below. If the input voltage $e_i(t) = E_i \cos \omega t$, what is the output voltage $e_o(t)$ at steady state?